Skip to main content

Policy gradients in AI

Policy gradients are a class of reinforcement learning algorithms used to learn the optimal policy for an agent in a given environment. Unlike value-based methods that estimate the value of different actions or states, policy gradient methods directly learn the policy function that maps states to actions.

The key idea behind policy gradients is to adjust the parameters of the policy in the direction that increases the expected return (or reward) from the environment. This is typically done using gradient ascent, where the gradient of the policy's expected return with respect to its parameters is computed and used to update the policy parameters.

Policy gradient methods have several advantages, including the ability to learn stochastic policies (policies that select actions probabilistically) and the ability to learn policies directly in high-dimensional or continuous action spaces. However, they can also be more sample inefficient compared to value-based methods, as they typically require more interactions with the environment to learn a good policy.

Popular policy gradient algorithms include REINFORCE, actor-critic methods, and Proximal Policy Optimization (PPO). These algorithms have been successfully applied to a wide range of reinforcement learning tasks, including game playing, robotics, and natural language processing.

Comments

Popular posts from this blog

Introduction to AI

What is artificial intelligence? Artificial intelligence (AI) is a field of computer science and technology that focuses on creating machines, systems, or software programs capable of performing tasks that typically require human intelligence. These tasks include reasoning, problem solving, learning, perception, understanding natural language, and making decisions. AI systems are designed to simulate or replicate human cognitive functions and adapt to new information and situations. A brief history of artificial intelligence Artificial intelligence has been around for decades. In the 1950s, a computer scientist built Theseus, a remote-controlled mouse that could navigate a maze and remember the path it took.1 AI capabilities grew slowly at first. But advances in computer speed and cloud computing and the availability of large data sets led to rapid advances in the field of artificial intelligence. Now, anyone can access programs like ChatGPT, which is capable of having text-based conve...

Logistics regression

Logistic regression in AI is a supervised learning algorithm used for binary classification tasks, where the goal is to predict a binary outcome (e.g., yes/no, 1/0) based on one or more input features. Despite its name, logistic regression is a linear model for classification, not regression. The key idea behind logistic regression is to model the probability that a given input belongs to a certain class using a logistic (sigmoid) function. The logistic function maps any real-valued input to a value between 0 and 1, representing the probability of the input belonging to the positive class. Mathematically, the logistic regression model can be represented as: \[ P(y=1 | \mathbf{x}) = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x} + b)}} \] Where: - \( P(y=1 | \mathbf{x}) \) is the probability that the input \(\mathbf{x}\) belongs to the positive class. - \( \mathbf{w} \) is the weight vector. - \( b \) is the bias term. - \( e \) is the base of the natural logarithm. During training, logistic...